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A hyperbolic hea t - t r ans fe r  equation is derived by the Maxwell method. The correla t ion be- 
tween the components of the thermal  velocit ies of the atoms o r  molecules  is taken into 
account.  

The l i te ra ture  reveals  a large number  of papers devoted to the derivat ion of a hyperbolic heat -con-  
duction equation [1], apparently motivated by the paradoxical  resul t  of an infinite heat-propagation velocity 
which emerges  from the c lass ica l  theory  of heat conduction. 

A hyperbolic heat-conduction equation in fact  resolves  this paradox, but a more  accurate  analysis of 
the nonlinear parabolic heat-conduction equation [2] also resul ts  in a finite heat-propagation velocity. We 
are thus confronted with the question of ~vhich type of hea t - t r ans fe r  equation corresponds  to reality.  

A hyperbolic heat-conduction equation was f i rs t  derived on the basis of molecular -k inet ics  con- 
s iderat ions  by an Italian invest igator ,  Cat taneo  [3~. He and all subseque~t invest igators  who used the con-  
cepts of Maxwell, Boltzmann, and Gibbs found that the coefficient of the hyperbolic term Was precisely equal 
to the relaxation t ime, which is ordinar i ly  small .  This c i rcumstance  gave r ise to the interpretat ion that 
in low-densi ty  gases ,  in which the relaxation time is appreciable,  heat is t r ans fe r r ed  in a wave manner,  in- 
volving the formation of a front at  a uniform tempera ture .  However, exper iment  shows that the discon-  
tinuities in low-densi ty  gases  fade and disappear ,  so that heat t r ans fe r  by a front is ruled out. 

Fu r the rm ore ,  as  ea r ly  as 1942 Academician V. V. Shuleikin found experimental ly  that in the dense 
gas flows which regulate the changes in the ea r th ' s  weather the heat is t r ans fe r red  by a front; i .e. ,  the 
heat flux obeys a wave equation [4]. Much more  recently this experimental  fact was given a theoret ical  
basis in t e rms  of Riemann manifolds by Predvoditelev [5]. 

1. Derivation of the Heat-Conduction Equation from the Maxwell Transpor t  Equation. Maxwell 
offered a method for  deriving t rans fe r  equations for  any quantity; an essent ial  feature of this method is 
that it absolutely does not involve the calculation of the velocity distr ibution of the molecules [6]. 

This method was used to derive the heat-conduction equation by the famous natural scientist  Ki rch-  
hoff and the Russian physicist  Stankevich [7]. Thei r  calculations agree approximately,  but in deriving a 
parabolic heat-conduction equation these invest igators  used cer tain assumptions which differ in detail. 

Let us consider  a monatomic gas in which there is no apparent macroscopic  velocity.  In this case 
heat is t r ans fe r r ed  by conduction alone. Denoting by Q any proper ty  of the molecules ,  we can wri te  the 
Maxwell t r ans fe r  equation as 

i0 0 0 ] 
N ~ = - -  - ~  (N~Q) + - ~ -  (NnO) ~- ~ (N;Q) + AQ; (1.1) 

here  AQ is the collision integral.  Substituting Q = m(~ 2 + 72 + ~) into (1.1) and taking into account the con- 
stancy of the kinetic energy during col l is ions,  we find 

- ~ [ P ( [  --r n~"-{-~2)l ---- ~ [pg (~2 + n~. _~ ;2)1 .q_ [P~I (g2 + ~12 .q_ ;2)] + ~ [p; (~2 - -  ,l ~ -r ,,. )] . (1 .2)  
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Since the quantity (~z + ~2 + ~2) is proport ional  to the t empera ture ,  the product  p~(~2 + ~/~ + ~2) is p ropor -  
tional to the amount of heat which c ro s se s  a unit a rea  yx. We can thus introduce the heat fluxes by means  
of the equation 

qx = p~ (~  + U3 + ;3), 

q~ = On (~3 + n~ + ;~), (L,S)  
q, = p; (~3 + n3 + ;3), 

Then Eq. (1.2) becomes 

dip,S3 + n3 + ;~)1 = aqx aq____~,j aq, dt ax ay az ' (1.4) 

The next step is to calculate the heat f luxes qx, qy,and qz" F o r  this purpose we substitute the quan- 
titym~(~2 + 7/2 + ~2) into Eq. (1.1), finding 

mAQ [~ (~ + n 3 + ~)] = .~ Ip~ (~2 + ~3 § 

0 ~ o (1.5) 
+ ~ [p~3 (~, q_ ~3 + ~3)1 + Ip~n (~ - n 3 + ;3)1 + Ip~; (~ + n' + ~3)]. 

Stankevich subsequently used the assumption that there  is no fr ic t ion,  i .e. ,  

f~ = i f =  0, 

and he used the assumption of a s teady-s ta te  heat flux; these assumptions  lead to 

d[p~ (~3 + ~ + ~)1 0. (1.6) 

Without making assumption (1.6), we rewr i te  (1.5) as  

~3 + ;3)] = d [~,~ (~3 + ~3 ~ ;~)] + a [p~ (~ + ~, + ;~)]. (~.7) /.nAQ [~ (V § 

Boltzmann [8] calculated the lef t  side of (1.7) for  Maxweliized molecules ,  finding 

mAQ [~ (~ + n ~ + ;~)] = - 2 ]/*~o3A~ (r;~ + n~ + ;~). (~.8) 

Using (1.8), we can rewri te  (1.7) as 

I _ _  {~ t  [p~(~ ~ q_~]3 q_ ~3)] q_ 0 
p~ (~,+ ~1 ~ + ~2)= 2A3p d :m ~ [p~3 (~3 -I- ~1' + r }. (1.9) 

Using a Maxwell ve loc i ty  dis tr ibut ion for  the molecules ,  we find 

, pg. 

p3 ' 
then Eq. (1.9) becomes  

p~ (~ + ~ + ;~) = ~ ~ [p~ (~ + ~ + ;~)l - -  5&  . 

If the p r e s su r e  does not va ry  f rom point to point, we find f rom this l a t t e r  equation and analogous equations 
that 

qy=__A d%__5A1p O (~) -~ ~ ' 

q~=--A' dq-----~--5Axp~z (-'~) " . d r  

(1.1o) 
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Substituting these equations into Eq.  (1.4), we find 

d A 0 [Oq~ O~y Oq~- i 
-~ [~ 1~ L ox + + Oz j 

+ O_[5A1 p 0 i 0 0 0 p 

The f i rs t  t e rm on the right of this l a t t e r  equation can be found from Eq. (1.4); then we have 

. d ~ a o o o a 
- - E  
dl k P / J  

Here 

A1-- 
2A2p V / - 2 ~  " (1.12) 

According to the concept  of Maxwell and Boltzmann the p res su re  p is defined in t e rms  of the thermal 
velocit ies by 

1 (1 .1 3 )  
p = -~  p (~ + n ~ + ;~) : 

this definition leads to an equation of state in the Clapeyron form 

p/p = RT. 

Since there is no apparent  veloci ty the continuity equation reduces to 

d_pp ~_ O, (1.14) 
dt 

so that we can remove the density p from the derivat ive on the left side of Eq. (1.11). 

Multiplying both sides of (1.11) by the specific heat at constant volume, C v, and using (1.13), we find 
an equation for the heat t ransfer :  

co~ 5[ + Co~A,~  = O-; ~ o~ I + ~ o oy ) oz oz f 

Here 
5 RCuT 5 

. p ~ _  - --ff ~0 (y )  cu (1 .16 )  

is the thermal  conductivity and/~0(T) is the viscosi ty .  

This la t ter  equation leads to the es tabl ishment  of the Maxwell complex 

~0 (T) 5 
const. 

Co~o ( 7) 2 (1.17) 

This complex is derived from completely  explicit  ideas regarding the nature of the thermal  motion found in 
the theory of gases .  For  more  complex thermal  motion, involving front motion, we assume that the Max- 
well complex is conserved.  

If we express  the density in Eq. (1.12) in t e rms  of the p ressure  and tempera ture ,  using (1.13), and if 
we introduce the relaxation time, following Maxwell, we find 

Ai 3 ~o 3 "c. (1.18) 
2 p 2 

At atmospher ic  p res su re  the relaxation t ime is on the order  of 10 -2~ sec,  and we can neglect the hy- 
perbolic t e rm in (1.15) by vir tue of the smal lness  of A1; we then find a heat-conduction equation of the 
parabolic type. This la t ter  asse r t ion  ver i f ies  the assumption of Stankevich, in (1.6). 
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2. Correla t ing Gas Systems.  The concept of a cor re la t ing  gas system was introduced as a logical 
general izat ion of the Maxwell concept by Predvoditelev in works on the equation of state of condensed 
media [8]. 

The Maxwell velocity distribution can be thought of as a general izat ion of the one-dimensional  La-  
p lace -Gauss  distribution to the case of three stat ist ical  charac te r i s t i cs  among which there  is no c o r r e l a -  
tion. Let  us determine the probability for finding the gas sys tem in the phase volume element dw = d~d~d~. 
If n(~, 77, ~) is  the number  Of molecules whose veloci t ies  lie in the interval dw, and N is the total number  of 
molecules ,  then this probabili ty is 

f(~,n,~) n(~,n, ~) 
N 

We now denote by f(0, f(~) and f(~) the probabili t ies for  finding molecules  in the intervals d~, dr/ and d~, 
respect ively.  We assume that these probabil i t ies are  independent; then according to the theorem on the 
multiplication of probabili t ies we have 

f(~, ~I, ~) ---- f(~)f01)f(~). (2.1) 

Maxwell justified this hypothesis of the independence of probabilities by arguing that the existence of 
cannot effect the existence of velocities ff and C in any manner, since they are all right angles to each other 

and are all independent of each other [9]. 

We assume that each of these probabilities obeys the Laplace-Gauss equation, 

f (~) = c~ exp (-- hg2), f (~) = c~ exp (-- hll'), f (~) = c 3 exp (-- h~2). 

Then af ter  substituting the lat ter  into (2.1) we find the Maxwell distribution 

f([, 'l, ~) ---- A exp [-- h (~ -}- ~l ~ + ~)]. 
(2 .2 )  

It is c lea r  f rom this discussion that the Maxwell velocity distribution has a shaky foundation. 

However, fur ther  evidence in favor of the universali ty of this distr ibution comes from the c i r cum-  
stance that it has been derived as one solution of the Boltzmann integrodifferential  equatiom However, 
Boltzmann's  hypothesis of a molecular ly  d i sordered  state of the sys tem is equivalent to the independence �9 
of the stat is t ical  charac te r i s t i c s ,  such as the thermal  velocit ies of the a toms or  molecules.  In other 
words,  Maxwell 's  concept in (2.1) is implicit ly incorporated in the Boltzmann equation. 

In his work, Predvoditelev completely avoided spherical  s y m m e t r y  in the s ta t is t ics  of the latent 
motions and f i rs t  introduced a distribution function with corre la t ing  stat is t ical  charac te r i s t i cs ;  in the case 
of an isotropic corre la t ion this function is [8] 

/ = A e x p [ - -  R3,  ( s ~  _ S~rl2 k S ~ )  ], 
2R4 (2.3) 

whe re 
l~ -3 r  1%3r  1 - -3 r  

s l = ~ ,  s~= - - . ,  s 3 - - - -  
1 - k  r l q- r l -k r 

If there  is no corre la t ion  we have r = 0, which leads in turn to R33 = 1, R = 1, s I = s 2 = s 3 = 1, e 3 = e, with 
distribution function (2.3) converting into (2.2). 

Equation (2.3) leads to the following refinement of the Clapeyron equation 

" P--- = tg (r) RT,  (2.4) 
P 

1 

(1- -  r) : r  ( 1 +  r) ~ ( 1 +  2r) ~ 

(r) = (1 + 3r) ~ (1 - 3r13/2 ( 2 . 5 i  

where 

The vir ial  of the internal forces  is not taken into account here. 
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Predvodi te lev ' s  Eq. (2.4) accura te ly  descr ibes  the experimental  data for  hydrogen over  broad ranges 
of the tempera ture  and p re s su re .  

Let us adopt a slightly different  interpretat ion in o rde r  to solve this problem. 

We assume that the heat is t r ans fe r r ed  by a front. Then at the front there can be e i ther  chemical  
react ions or phase t ransi t ions ,  and the thermal  conductivity defined by (1.16) cannot cope with a smoothing 
of inhomogeneities in the tempera ture .  F o r  such a s y s t e m  we can assume that the p res su re ,  density, and 
tempera ture  are  related by (2.4). In this case this lat ter  equation should be called the "equation of the non- 
equilibrium process . "  

If we now use Eq. (2.4) in convert ing f rom (1.11) to (1.15), we find 

C a p - - ~  ~, CvpA ~ -- )~ + + " , (2.6) 

whe re 

Using (2.4), we can rewri te  (1.12)as 

(T) = �9 (r))~o (T). (2.7) 

AI = 3 _  ~_~_0 ~ (r) = 3 ~ (r), (2.S) 
2 p 

i.e., the additional p rocesses  which occur  at the front render  A 1 perceptible through a function of the c o r -  
relat ion coefficient �9 (r), and the hyperbolic t e rm must  be present  in Eq. (2.6). 

Since the introduction of a cor re la t ing  function of the molecular  velocity distr ibution is equivalent to 
a manifestat ion of gyroscopic  forces ,  we do not claim to be offering a r igorous  solution to this problem. 
We have simply demonstrated one possible way to solve this problem. 

~,~,~ 

X0 
R 
P~3 

(Y3 

N O T A T I O N  

are the components of the the rmal  veloci ty  of the a toms or  molecules;  
is the thermal  conductivity determined in accordance with the Maxwell concepts; 
is the corre la t ion coefficient; 
is the minor of the corre la t ion  determinant;  
is the mean- squa re  deviation along the z axis.  
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3. 
4. 
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